【】高可用,可伸缩,云端全托管。集成X-Pack高级特性,适用日志分析/企业搜索/BI分析等场景
导语 | 随着业务的发展,系统日益复杂,功能愈发强大,用户数量级不断增多,设备cpu、io、带宽、成本逐渐增加,当发展到某个量级时,这些因素会导致系统变得臃肿不堪,服务质量难以保障,系统稳定性变差,耗费相当的人力成本和服务器资源。这就要求我们:要有勇气和自信重构服务,提供更先进更优秀的系统。
文章作者:刘敏,腾讯基础架构研发工程师。
前言
自今年三月份以来天机阁用户数快速上涨,业务总体接入数达到1000+,数据进入量更是迎来了爆发式上涨,日均处理量上涨了一个数量级:Trace数据峰值处理量达到340亿/日条,Log日志数据峰值处理量级达到140亿/日条。
面对海量数据,老的实时计算系统处理压力逐渐增加,底层存储系统无论在磁盘、IO、CPU、还是索引上都面临巨大的压力,计算集群资源利用率不高,系统的调整优化迫在眉睫。
一、什么是天机阁
在传统单机系统的使用过程中,如果某个请求响应过慢或是出错,开发人员可以通过查看日志快速定位到具体服务。
而随着业务的越来越复杂,架构由单体逐渐演变为微服务架构。特别是随着容器, Serverless等技术的广泛应用,它将庞大的单体应用拆分成多个子系统和公共的组件单元。
这一理念带来了许多好处:复杂系统的拆分简化与隔离、公共模块的重用性提升与更合理的资源分配、大大提升了系统变更迭代的速度以及可扩展性。
但反之,业务架构也随之变的越来越复杂,一个看似简单的业务后台可能有几百甚至几千个服务在支撑,当接口出现问题时,开发人员很难及时从错综复杂的服务调用中找到问题的根源,从而错失了止损的黄金时机,排查问题的过程也需要耗费大量的时间和人力成本。
为了应对这一问题,业界诞生了许多优秀的面向Devops的诊断分析系统,包括Logging、Metric、Tracing。三者关系如图所示:
三者互相重叠,又各自专注于自己的领域,将三者结合起来就可以快速定位问题。而已知的业界优秀开源组件有诸如:
随着时间的推移可能会集成更多的功能,但同时也不断地集成其他领域的特性到系统中来。而天机阁正是腾讯研发的集三位于一体的分布式链路追踪系统,提供了海量服务下的链路追踪、故障定位、架构梳理、容量评估等能力。
最近第二代天机阁系统已经建设完成,新天机阁采用opentelemetry标准,可以支持更多场景的数据接入,同时在系统稳定性,数据实时性方面都有很大提升。
二、系统架构
从数据流转角度来看,天机阁整体可以分为数据生产链路与消费链路,其中数据生产链路主要包括数据接入层、数据处理层、数据存储层。整体如下图所示。
1. 数据接入层
主要负责数据采集工作,天机阁支持http+json、http+proto、grpc等多种数据上报方式,业务可以采用对应语言的SDK进行数据上报。根据业务上报环境,可选择Kafka、虫洞等多种数据接入方式,为减少数据传输耗时,提升系统的容错能力,天机阁提供了上海、广州、深圳等多个不同区域的接入通道,数据接入时会根据Idc机器所在区域自动进行“就近接入”。
2. 数据处理层
基于Flink构建的天机阁流式计算平台。主要处理三部分数据:第一部分是Metric模调数据的计算工作,结果同步至Druid。第二部分是日志数据,基于DataStream模式对数据进行实时消费,同步至ES日志集群。第三部分是Trace数据,基于KeyedStream的分组转换模式,根据业务Traceid进行Keyby,将一条Stream流划分为逻辑上不相交的分组,把相同Traceid的数据实时汇聚到同一个窗口,再对数据进行统计聚合,生成拓扑图、调用链、调用树等数据模型,结果同步至Hbase与ES。
3. 数据存储层
ES主要用于用于建立热门Trace的倒排索引以及存储日志数据,Harbo/Druid系统用于存储模调数,Hbase用于存储调用链,拓扑图,关系链等数据。
三、问题回顾
在海量流量的冲击下,日志集群与Metric集群一直比较稳定,处理耗时基本在秒级。影响较大的是Trace集群,Trace集群主要通过滚动窗口接收一个Trace请求的所有RPC 的Span信息。
由于业务接入量的上涨以及不少业务的放量,Trace集群的日均处理量由3月份的40亿/day爆发式上涨到340亿/day,且集群还要经常面临业务热点push、错误埋点等场景的挑战。
这些问题直接导致数据实时性开始下降,期间经常收到用户反馈数据延时大,数据丢失的问题。而系统层面,则频繁出现集群抖动、延时飙升、Checkpoint失败等现象。同时存储也面临巨大的写入压力:Hbase与ES均出现写入延时上涨、毛刺的现象,而这些因素最终导致计算集群的处理性能变弱,稳定性下降。产生消费滞后,数据堆积的问题。具体有如下四个表象:
1. 集群抖动
集群毛刺、抖动情况增多,系统处理性能变弱,上游Kafka通道出现大量数据堆积情况,系统处理延时上升。
2.资源倾斜
Flink算子反压严重,部分节点出现CPU过载的情况,且各算子的Checkpoint时间变长,频繁失败。
3. 存储抖动
Hbase写入延时上涨,高峰期写入延时上涨到1300ms左右,写ES平均延时上涨到2000ms,早上8~10点出现大面积写入ES被拒绝的现象,最终会导致上游集群挂掉。
4. 系统异常
某些时间点出现系统异常,同时集群处理延时飙升。
本着先抗住再优化的思想,当出现上述问题时,为保证系统的可用性,我们会采取各种快速恢复策略,诸如计算资源扩容、数据降级、关闭数据可靠性等策略来提升集群的处理性能,达到快速恢复的目的。
但这些策略都治标不治本,性能问题周而复始的出现。这不但浪费了大量计算集群资源,集群处理性能,吞吐,稳定性都没有实质上的提升。
四、问题分析
针对上述四种现象,结合业务分别从接入层、存储层、计算层对系统进行了全面分析,找出了目前Trace系统存在的问题以及瓶颈,并制定了对应的优化方案:
如上图所示,一次RPC的请求和回包最终会合并成一个Span,而每个Span包含Traceid、Spanid,以及本次RPC调用涉及的主被调服务信息。
在接入层进行数据采样上报时,会将相同Traceid的Span集合路由到同一个数据通道中,而计算层会对不同通道的数据做隔离,不同通道采用不同的计算任务对数据进行处理。
大致流程如下:首先根据Traceid高位字节进行Reducekeby,确保同一个RPC请求的数据能路由到同一个窗口,再通过窗口函数对同一个请求的数据集合进行聚合计算,实时生成拓扑图,调用链等数据模型,批量写入ES和Hbase等列式存储。
在业务量少,集群相对稳定的情况下,Trace集群平均处理时长在20-40s左右,即从一次Trace数据的上报到可展示的过程大概要经过半分钟。
当系统不稳定或者处理性能下降时,数据延时会上涨至小时甚至天级别,而主要导致系统不稳定的因素有两种:
具体表现为:
1. 底层存储数据摄入能力下降
Hbase写入耗时达到1300ms ES写入耗时达到2000ms。
2. 热key造成集群资源倾斜
导致集群产生毛刺、吞吐量下降等问题 。
3. 脏数据、代码bug造成服务异常,导致集群毛刺增多
4. 集群缺乏容错能力,过载保护能力 。
天机阁既是一个写密集型系统,也是一个时延敏感型系统,对数据的实时性有比较高的要求。系统的不稳定会导致消息通道大量数据堆积,数据实时性下降,最终影响用户体验,这是不能被容忍的。所以针对上述问题,我们需要对原系统进行全面的优化升级。
五、整体优化思路
六、ES优化
Elasticsearch 是一个实时的、Restful 风格的分布式搜索数据分析引擎,内部使用lucene做索引与搜索,能够解决常规和各种类型数据的存储及检索需求,此外ES还提供了大量的聚合功能可以对数据进行分析,统计,生成指标数据等。典型的应用场景有:数据分析,站内搜索,ELK,电商等,主要特点为:
天机阁使用腾讯云的ES组件,专门用于建立热门Trace倒排索引,用户在使用天机阁进行链路追踪查询时,首先可以指定Tag或者染色Key查询到任意时刻上报的Trace元数据,天机阁会根据查询到的Trace数据绘制出完整的服务调用过程。同时在UI上可以支持瀑布、调用树的多种样式的数据展示。如下图所示:
随着进入量的上涨,ES集群内部写入峰值达到80w/s,日均文档总量达到280亿,索引占用总量达到 67T,每天新增索引量达到1000+,而每日文档新增存储总量达到10T。
机器配置采用为:64个4C 16g的数据节点,平均CPU使用率在45-50%之间;最大CPU使用率在80%左右;内存使用率60%左右,而磁盘平均使用率达到了53%,整体流程为。
天机阁是基于业务Appid维度按天索引的策略,而伴随业务量的极速上涨主要暴露出来的问题为:
(1)集群内部分片过多
分片过多的缺点主要有以下三个方面:
(2)分片大小不均匀
部分索引的分片容量超过50G,侧面反应了这些索引分片策略的不合理,最终会导致索引的查询性能变慢。
(3)写入耗时过大,部分索引查询性能慢
ES写入耗时达到(1500ms-2000ms),此外分片过大也直接影响到索引的查询性能。
(4)索引创建过慢(1分钟),大量写入被拒绝
集群没有设置主节点,导致创建索引时,数据节点要充当临时主节点的角色,写入量较小的时候,影响不大,当写入压力过大时,会加剧数据节点的负载,影响索引的创建速度。
当出现密集型索引创建时,这个问题被无限放大,索引创建同时也会伴随大量的元数据移动,更加剧了节点负载,从而导致大量数据写入被拒绝现象。
而写入被拒绝最终会导致上游Flink集群剧烈抖动(写入失败抛出大量异常),以致于索引创建高峰期经常出现2-3小时的集群不可用状态。
(5)系统出现大量异常日志
ES服务器异常,主要分为两类,一类是:数据解析异常,另一类是:Fields_limit异常。
(6)索引的容量管理与维护困难
主要是解决大规模以及日益增长数据场景下,集群的自动化容量管理与生命周期管理的问题。
优化点1:优化集群内部分片过多、分片不合理、节点负载不均等问题。
其中主要涉及了二个问题:
上述问题可以阅读ES官方文档和腾讯云ES文档得到全面的答案,这里不再赘述,总而言之,查询和写入的性能与索引的大小是正相关的,要保证高性能,一定要限制索引的大小。
而索引的大小取决于分片与段的大小,分片过小,可能导致段过小,进而导致开销增加,分片过大可能导致分片频繁Merge,产生大量IO操作,影响写入性能。通过阅读相关文档,我提炼了以下三条原则:
当然最好的方法是根据自身业务场景来确定分片大小,看业务是注重读还是注重写以及对数据实时性、可靠性的要求。
天机阁的索引设计模式是非常灵活的,属于典型的时序类型用例索引,以时间为轴,按天索引,数据只增加,不更新。
在这种场景下,搜索都不是第一要素,查询的QPS很低。原先的分片策略针对容量过低的索引统一采用5个分片都默认配置,少数超过500G的大索引才会重新调整分片策略。
而随着近期接入业务的不断增多以及索引进入量的暴涨,集群内部出现了许多容量大小不一,且分布范围较广的索引。老的配置方式显然已经不太合理,既会导致分片数急剧增长,也影响索引的读写性能。
所以结合业务重新评估了集群中各个索引的容量大小,采用分级索引模版的分片控制策略,根据接入业务每天的容量变化,实现业务定制化的自适应分片。
索引调整策略表
一般而言:当用户遇到性能问题时,原因通常都可回溯至数据的索引方式以及集群中的分片数量。对于涉及多租户和用到时序型索引的用例,这一点尤为突出。
优化点2:优化写入性能。
减少集群副本分片数,过多副本会导致ES内部写扩大。ES集群主用于构建热门Trace索引用于定位问题,业务特性是写入量大而数据敏感度不高。所以我们可以采用经济实惠的配置,去掉过多副本,维护单副本保证数据冗余已经足够,另外对于部分超大索引,我们也会采用0副本的策略。
索引设计方面,id自动生成(舍弃幂等),去掉打分机制,去掉DocValues策略,嵌套对象类型调整为Object对象类型。此处优化的目的是通过减少索引字段,降低Indexing Thread线程的IO压力,经过多次调整选择了最佳参数。
根据ES官方提供的优化手段进行调整,包括Refresh,Flush时间,Index_buffer_size等。
上述优化,其实是对ES集群一种性能的取舍,牺牲数据可靠性以及搜索实时性来换取极致的写入性能。但其实ES只是存储热门数据,天机阁有专门的Hbase集群对全量数据进行备份,详细记录上报日志流水,保证数据的可靠性。
客户端API升级,将之前ES原生的批量API升级为Transport API,策略为当数据缓存到5M(灵活调整)大小时,进行批量写入(经过性能测试)。
优化点3:优化索引创建方式。
优化点4:优化ES服务器异常。
cpu使用率:CPU使用率45% => 23%,内部写入量从60万/s => 40万/s。
磁盘使用率:53% => 40%。
写入拒绝率:索引写入拒绝率降为0。
集群宕机问题被修复:
查询耗时:大索引跨天级别查询在500ms左右。
分片数量:7万 => 3万,减少了50%,同时索引存储量优化了20%。
写入耗时:从2000ms => 900ms左右。
经过一期的优化ES写入性能有了明显提升,但还存在一些痛点,包括:
(1)升级硬件配置
4C16G升级为16C 32G, 节点总数由64降为48,开启专用主节点。默认情况下集群中的任何一个节点都有可能被选为主节点,为了确保一个集群的稳定,当节点数比较多时,最好是对生产环境中的节点进行职责划分,分离出主节点和数据节点。
天机阁采用3(防止脑裂)台低配置的节点作为专用主节点,负责索引的创建、删除、分片分配等工作,数据节点专门用来做数据的索引、查询、更新、聚合等工作。
(2)ES集群分通道部署
目前天机阁只有一个公共集群,所有业务都在同一个集群中创建索引,这种方式虽然具备了一定的可扩展性。但是随着业务量的进一步增长,集群规模也会逐渐变的巨大,从而容易达到系统的性能瓶颈,无法满足扩展性需要,且当大集群中有索引出现问题时,容易影响到其他业务。
所以我们从业务维度对公共集群进行解耦,按通道做set化部署,将不同通道业务,就近路由到不同集群,各集群可按需灵活扩展。
(3)基于ILM + Rollover + 别名实现索引自动化生命周期管理与容量管理
天机阁是典型的日志型时序索引,根据应用Appid按天定时生成索引,索引的生命周期默认为7天,其中当天的数据会被频繁写入与查询,第二、三天的数据偶尔被查询,后面几天的数据只有少数重度业务使用者才会查询到。
这样的特性会衍生出来几个问题:
我们希望构建一个优雅的索引自动化运维管理系统,而这个系统主要解决两个问题:
ES在索引管理这一块一直在进行迭代优化,诸如Rollover、日期索引、Curator等都是对索引管理的一种策略,但是这些方式都不够自动化。
直到ES6.7以后,官方推出了ILM(index lifestyle management)索引生命周期管理策略,能同时控制多个索引的生命流转,配合索引模板、别名、Rollover能实现自动化索引生命周期与容量的管理闭环。
ILM策略主要有四个阶段:
天机阁通过Flink Stream读取Kafka数据实时写入ES,峰值QPS接近35w,每天新增索引超过1000+。
在这么大数据量上进行操作是一件很麻烦的事。我们希望ES能够自动化对分片超过100G的索引进行滚动更新,超过3天后的索引进行自动归档,并自动删除7天前的索引,同时对外以提供索引别名方式进行读写操作。
这个场景可以通过ILM配置来实现,具体策略是:对于一些小于40G的索引,在Warm阶段执行Shrink策略压缩成单分片,并设定写入低峰期执行Forcemerge操作合并集群中小的段,Cold阶段可以执行Allocate操作来减少副本数,而针对集群内部1%的大索引,可以执行Freeze操作来释放部分存储空间。具体策略如下表所示:
天机阁索引ILM策略
索引模板配置
ILM可以高效的进行索引生命周期与容量自动化管理,使用起来也很简单。但是还是有不少要注意的地方。
后续优化:ILM + 冷热架构,ILM 可支持为时序索引实现热温冷架构从而节约一些成本。
七、优化后整体架构图
Flink实时计算系统是天机阁链路追踪平台的重要组成部分,数据经过Flink窗口进行实时计算聚合最终sink到ES与Hbase等底层存储,而日益增长的数据量给计算集群带来了很大的挑战。
面对这些问题,我们重新梳理了整个链路架构,找到系统的瓶颈所在,并展开了一系列有效的优化措施。而在未来,我们会继续在大数据领域的探索研究工作,更进一步的打磨系统数据处理能力,提供更好的服务。
整体从计算层、存储层、架构、服务质量等几个维度对系统进行了优化,同时也加强了系统的容灾能力
结语
性能是用户体验的基石,而性能优化的最终目标是优化用户体验,俗话说:“天下武功,唯快不破”,这句话放到性能优化上也是适用的。
我们优化ES, Habse存储摄入速度,优化Flink的处理速度以及接入层的数据采集能力,都是为了保证数据的“快”。而优化的过程则需要我们做好打持久战的准备,既不能过早优化,也不能过度优化。
最好的方式是深入理解业务,了解系统瓶颈所在,建立精细化的的监控平台,当系统出现问题时,我们就可以做到有条不紊,从应用,架构,运维等层面进行优化分析,设定一些期望的性能指标,并对每次优化措施和效果做总结思考,从而形成自己的方法论。
包含文章发布时段最新活动,前往,可查找ES当前活动统一入口
本文地址:http://lianchengexpo.xrbh.cn/quote/7133.html 迅博思语资讯 http://lianchengexpo.xrbh.cn/ , 查看更多